【JFD专栏】高比表面积和窄粒径分布NMC的生产

2017-05-03 09:46:54 q403

    用于HEV和PHEV的动力电池要兼顾功率和能量密度的需求,动力型三元材料的要求跟普通用于消费电子产品的三元材料是不一样的。满足高倍率的需求就必须提高三元材料的比表面积而增大反应活性面积,这跟普通三元材料的要求是相反的。三元材料的比表面积是由前驱体的BET所决定的,那么如何在保持前驱体球形度和一定振实密度的前提下,尽可能的提高前驱体的BET,就成了动力型三元材料要攻克的技术难题。

乐清市人禾电子有限公司(RHI Electric Co.,Ltd)专注于软质PVC浸塑保护套、连接装置配件和新能源电池连接配件的生产和研发。

    一般来说,提高前驱体BET需要调整络合剂浓度,并且改变反应器的一些参数比如转速温度流速等等,这些工艺参数需要综合优化,才能不至于较大程度牺牲前驱体的球形度和振实密度,而影响电池的能量密度。采用碳酸盐共沉淀工艺是提高前驱体BET的一个有效途径,正如笔者前面提到的碳酸盐工艺目前还存在一些技术难题,但笔者个人认为,碳酸盐共沉淀工艺或许可以在生产高比表面积三元材料方面发挥用武之地,因此这个工艺值得深入研究。

    动力电池的一个最基本要求就是长循环寿命,目前要求与整车至少的一半寿命相匹配(8-10年),100%DOD循环要达到5000次以上。就目前而言,三元材料的循环寿命还不能达到这个目标,目前国际上报道的三元材料最好的循环记录是Samsung SDI制作的NMC532的三元电芯,在常温下0.5C的循环寿命接近3000次。

    但笔者个人认为,三元材料的循环寿命还有进一步提高的潜力。除了笔者前面提到的杂原子掺杂、表面包覆等因素以外,控制产品的粒径分布也是一个很重要的途径,对动力电池来说这点尤为重要。我们知道,通常生产的三元材料的粒径分布较宽,一般在1.2-1.8之间。如此宽的粒径分布,必然会造成大颗粒和小颗粒中Li和过渡金属含量的不同。

    精细的元素分析结果表明,小颗粒中的Li和镍含量高于平均值(Li和镍过量)而大颗粒的Li和镍含量低于平均值(Li和镍不足)。那么在充电过程中,由于极化的原因,小颗粒总是过度脱锂而结构被破坏,并且在充电态高镍小颗粒与电解液的副反应更加剧烈,高温下将更加明显,这些都导致小颗粒循环寿命较快衰减,而大颗粒的情况正好相反。

    也就是说,材料整体的循环性能实际上是由小颗粒所决定的,这也是制约三元材料循环性进一步提升的重要因素。这个问题在3C小电池中是无法体现出来的,因为其循环性只要求达到500而已,但是对于循环寿命要求达到5000次的动力电池而言,这个问题将是非常重要的。

    进一步提升三元材料的循环性,就必须生产粒径大小均匀一致(粒径分布小于0.8)的三元材料,从而尽可能的避免小颗粒和大颗粒的存在,这就给工业化生产带来了很大的挑战。NMC的粒径分布完全取决于前驱体,这里我们再一次看到了前驱体生产对三元材料的重要意义。

    对于氢氧化物共沉淀工艺,使用普通的反应器是不可能生产出粒径分布小于1.0的前驱体颗粒的,这就需要采用特殊设计的反应器或者物理分级技术,进一步减小前驱体的粒径分布。采用分级机将小颗粒和大颗粒分离以后前驱体的粒径分布可以达到0.8。

    因为去除了小颗粒和大颗粒,前驱体的产率降低了,这实际上较大地增加前驱体生产成本。为了达到原材料的综合利用而降低生产成本,厂家必须建立前驱体回收再处理生产线,这就需要厂家综合权衡利弊,选择合适的工艺流程。

    窄粒径分布的三元材料在实际应用中,极片涂布的一致性明显提高,除了增加电芯循环寿命以外,还可以降低电池的极化而改善倍率性能。国内三元厂家由于技术水平的限制,目前还没有认识到这个问题的重要性。笔者个人认为,窄粒径分布将会成为动力型三元材料的一个重要技术指标,希望这个问题能够引起国内厂家的高度重视。